
Research Article

Utilization of multilayer perceptron
for determining the inverse kinematics
of an industrial robotic manipulator

Sandi Baressi Šegota1, Nikola And̄elić1, Vedran Mrzljak1,
Ivan Lorencin1, Ivan Kuric2 and Zlatan Car1

Abstract
Inverse kinematic equations allow the determination of the joint angles necessary for the robotic manipulator to place a
tool into a predefined position. Determining this equation is vital but a complex work. In this article, an artificial neural
network, more specifically, a feed-forward type, multilayer perceptron (MLP), is trained, so that it could be used to
calculate the inverse kinematics for a robotic manipulator. First, direct kinematics of a robotic manipulator are determined
using Denavit–Hartenberg method and a dataset of 15,000 points is generated using the calculated homogenous trans-
formation matrices. Following that, multiple MLPs are trained with 10,240 different hyperparameter combinations to find
the best. Each trained MLP is evaluated using the R2 and mean absolute error metrics and the architectures of the MLPs
that achieved the best results are presented. Results show a successful regression for the first five joints (percentage error
being less than 0.1%) but a comparatively poor regression for the final joint due to the configuration of the robotic
manipulator.

Keywords
Artificial intelligence, artificial neural network, inverse kinematics, machine learning, multilayer perceptron, robotic
manipulator

Date received: 11 August 2020; accepted: 14 June 2021

Topic Area: Robot Manipulation and Control
Topic Editor: Andrey Savkin
Associate Editor: Martin Grossman

Introduction

Determining kinematic properties of a robotic manipulator

is a crucial step in any work relating to the use of the

robotic manipulator. Before any further calculations can

be performed, direct and inverse kinematic equations need

to be determined. Direct kinematic equations allow the

transformation from the joint variable space into the tool

configuration space, that is, calculation of the position of

tool in workspace from predefined joint rotation values.1

Inverse kinematic equations allow the opposite transforma-

tion from the tool configuration space to the joint variable

space, that is, if we know the position in the workspace that

we are trying to achieve, we can calculate the joint values

necessary to position the tool at that location. While the

determination of the robotic manipulator direct kinematics

is relatively straightforward, and there are methods such as

Denavit–Hartenberg (D-H) that allow for the simple deter-

mination, determining inverse kinematics is a more

1Department of Engineering, University of Rijeka, Rijeka, Croatia
2 Department of Mechanical Engineering, University of Žilina, Žilina,

Slovakia

Corresponding author:

Zlatan Car, Department of Engineering, University of Rijeka, Vukovarska

58, 51000 Rijeka, Croatia.

Email: zlatan.car@riteh.hr

International Journal of Advanced
Robotic Systems

July-August 2021: 1–11
ª The Author(s) 2021

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1729881420925283

journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://orcid.org/0000-0003-2817-9252
https://orcid.org/0000-0003-2817-9252
mailto:zlatan.car@riteh.hr
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1729881420925283
http://journals.sagepub.com/home/arx
https://creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881420925283&domain=pdf&date_stamp=2021-08-16

complex process.2 Determining the inverse kinematic

equations for complex robots has high algebraic complex-

ity.3 Determining the solution numerically is an option, but

it takes a comparatively long time compared to using a

direct solution, such as an equation.

In this article, a method is proposed in which multilayer

perceptron (MLP) is used to regress the equations for the

inverse kinematic equations for each joint. ANN is an arti-

ficial intelligence or machine learning algorithm4 that can

be used for solving various regression and classification

tasks.5,6 Artificial intelligence methods such as this have

a wide variety of applications. ANNs and other artificial

intelligence methods, such as evolutionary computing

algorithms,7–9 have a wide variety of uses in robotics in areas

such as computer vision10,11 and path optimization12–14 and

navigation.15,16 ANN emulates the human neural system

using a structure of nodes, referred to as neurons, that are

interconnected with weighted connections.17,18 By adjusting

this weight depending on the data, ANNs can provide the

ability to classify or regress the input data to a solution with

high precision.18,19 Robotic manipulator used is modeled

after a realistic six degrees of freedom (6-DOF) manipulator

ABB IRB 120.

State-of-the-art

Villegas et al.20 use the dataset adaptation technique to

solve the inverse kinematic issue, by ANN retraining using

data points with higher error values. This approach shows

promising results in rising the accuracy of the trained ANN.

Nemeth et al.21 show the use of machine learning methods,

such as classification trees and clustering, in the process of

detecting failures in production systems. The authors show

a successful detection of failures using these methods,

using data collected from control program’s logged files.

Ghafil et al.22 attempt to solve inverse kinematics of 3-DOF

robotic manipulator using Levenber–Marquardt, Bayesian

regularization, and scaled conjugate gradient learning algo-

rithms. Results show that the best results are provided when

using the Bayesian regularization algorithm. Demby et al.23

show the use of a reinforcement learning method, specifi-

cally ANNs and adaptive neurofuzzy inference systems.

While their methods show some ability to regress, the

authors conclude that the results are not accurate enough

for use. Ghasemi et al.24 show the use of an ANN for the

determination of inverse kinematics on a simple 3-DOF

RRL robotic manipulator. The proposed solution shows

that ANNs have the ability to be used for kinematic deter-

mination for a simpler robotic manipulator. Dash et al.25

attempt to regress the inverse kinematic equations using the

ANN. The authors conclude that the results achieved are

not satisfactory, as they have a very low accuracy espe-

cially for the second and sixth joint of the manipulator,

most probably caused due to a low number of training data

and no hyperparameter variation. Zarrin et al.26 show the

application of the ANN for the direct control of a soft

robotic system. This article shows a successful application

of the ANN in use with robotic manipulators. Takatani

et al.27 use a neural network to achieve determination of

joint values. The authors propose the use of a complex,

multi-ANN model to learn the inverse kinematics without

the use of evaluation functions. The results show that, for a

3-DOF, robotic manipulator solution like the proposed one

can provide satisfactory results. Dereli and Köker28 pro-

pose a metaheuristic artificial intelligence solution for

inverse kinematic calculation. Multiple algorithms are

compared by authors (quantum behaved particle swarm,

firefly algorithm, particle swarm optimization, and artifi-

cial bee colony) and best results are shown when using

quantum behaved particle swarm. Lim and Lee29 discuss

the number of points necessary for the inverse kinematic

solutions. Their findings show that regression can be

learned with as little as 125 experimentally obtained data

points.

Hypotheses

This article is trying to prove three hypotheses and these are

as follows:

� a MLP ANN can be used to determine inverse kine-

matics of a realistic 6-DOF manipulator instead of a

more complicated method,

� determine the best possible configuration of the

MLP for determining inverse kinematics of each

joint, and

� a dataset virtually generated from direct kinematics

can be used for ANN training.

The novelty of this article is twofold. First, it lays in the

fact that an artificially generated dataset has been used to

train the neural network. Using an artificially generated

dataset, training of inverse kinematics networks for a new

robotic manipulator can be performed significantly faster

than when an experimental dataset is used (provided that

the results are satisfactory). This would allow for training

of the neural networks in such a case where the robotic

manipulator is not readily available to the researchers to

perform a large number of experimental measurements

upon. The second part lays in the fact that only the x, y,

and z spatial positions of the end effector are used as inputs

without the orientations of the end effector. In case that

satisfactory result can be achieved this way, the method

would show the ability to regress the inverse kinematics

problem without the need for measurement of the Euler

angles, which define the orientation, simplifying training

of such neural networks.

In continuation, first, the methodology will be pre-

sented. The method used for determining direct kinematics

and the dataset generation will be explained. After that, a

description of MLP ANNs is given, along with the methods

for hyperparameter determination and solution quality

2 International Journal of Advanced Robotic Systems

estimation. Finally, results are presented and discussed

along with the drawn conclusions.

Methodology

In this article, the methodology used in our research will

be presented. First, the process of determining the direct

kinematic equations of the robotic manipulator will be

described, followed by the description of a way those

equations were used to generate a used dataset. The over-

view of the ANN will be given, along with the description

of chosen activation functions and hyperparameters used

during the grid search process. Finally, the way authors

evaluated the quality of the obtained solutions will be

presented.

Direct kinematic equation determination

Direct kinematic equations are determined using the D-H

algorithm. In the D-H algorithm, each joint is assigned a

sequential number i from 1 to n, where 1 depicts the first

joint of the robotic manipulator nearest to the base and n

depicts the last joint of the robotic manipulator.30 Then, the

recursive D-H algorithm is started. In the first iterative part,

each joint is assigned a right orthonormal coordinate sys-

tem Lk, where k 2 0; n½ and k ¼ i� 1 for each joint.31 At

the start of the algorithm, the base joint of the robotic

manipulator is assigned the coordinate system L0 with the

axes x0, y0, and z0. For the remaining joints, the axes of the

coordinate system for each joint are placed in such a way

that axis zk equates the joint axis of the associated joint.

Axis xk is placed in the cross-section of the axes zk and zk�1.

If the axes zk and zk�1 are not perpendicular, the axis xk is

placed in such a way that it is perpendicular to the axes zk

and zk�1. The remaining axis yk for each joint k is placed in

such a way that the right oriented orthonormal coordinate

system is formed.32,33 Once all the coordinate systems have

been formed, points bk for each joint k are placed. Point bk

for each joint is placed at the intersection of axes xk and

zkþ1. If those axes are not perpendicular, point bk is placed

at the intersection of axis xk and axis perpendicular to both

axes xk and zkþ1.34 With the coordinate system L and points

b placed, the kinematic parameters can be determined.

There are four kinematic parameters that need to be deter-

mined for each joint k: dk, ak, ak , Y k .32,35 These para-

meters represent

� qk : the joint angle defined as the angle of rotation

around axis zk�1 that makes axes xk�1 and xk

parallel;

� ak : the angle of rotation around axes xk that makes

axes zk�1 and zk parallel;

� dk: translation along axis zk�1 needed to achieve

intersection of axes xk�1 and xk; and

� xk: translation along axis xk�1 needed to achieve

intersection of axes zk�1 and zk.

For a rotational joint, qk is treated as a variable, and for a

translational joint, dk is treated as a variable.36 Values for

each joint are placed in the matrix

T k
k�1 ¼

CY k
�Cak

SY k
Sak

SY k
akCY k

SY k
Cak

CY k
�Sak

CY k
akSY k

0 Sak
Cak

dk

0 0 0 1

2
6664

3
7775 (1)

Because of the size of the equations, the shortened tri-

gonometric format is used. When using this format, the

trigonometric functions are written using only the first let-

ter of their name, so sine is written as S and cosine as C. In

addition, the arguments of the functions are written as

indexes. The kinematics matrix for the entire robotic

manipulator, connecting the base of the robotic manipula-

tor and the tool, is calculated as a product of the homoge-

nous transformation matrices Tk
k�1 of each joint. The

resultant matrix T tool
base is formatted as35,37

T tool
base qð Þ ¼

R qð Þ p qð Þ
vT

1 s

� �
(2)

in which vT
1 represents the perspective vector, with the

usual value of 0 0 0½ �, s represents the scaling coefficient

with the usual value of 1. The vector p qð Þ (3� 1) repre-

sents the final tool position in the workspace.34 Matrix

R qð Þ ¼ r1 r2 r3½ � (3� 3) represents the tool orientation

matrix, where33,38

� r1 is the perpendicular vector,

� r2 is the movement vector, and

� r3 is the approach vector.

Robotic manipulator tool positioning can be defined

using

w ¼ w1

w2

� �
¼ ½x y z�T T
� �

(3)

with x, y, and z being robotic manipulator end-effector

positions in the tool configuration space, and F, Y , and

C being Euler angles (spin, nutation, and precession).33,39

Vectors w1 and w2 can be defined using the homogenous

transformation matrix of the robotic manipulator

w1 ¼ p qð Þ (4)

and

w2 ¼ r3 (5)

where p qð Þ and r3 are members of the homogenous trans-

formation matrix T tool
base qð Þ, as described in equation (3).

Dataset generation

To generate the dataset, first, the possible joint values need

to be defined. Figure 1 shows the robotic manipulator in

Baressi Šegota et al. 3

diametric view with joint axes displayed. The limits of joint

angle values for each joint are given in Table 1. On the

figure, axes 1 through 6 represent the rotational axis of

the corresponding joint of the robotic manipulator, with the

arrows representing the directions in which the given joint

is capable of rotating.

A random value is generated for each joint within its

given range. These values are generated with a uniform

random distribution. Then, the direct kinematic equations

are used to calculate the x, y, and z coordinates of the

robotic manipulator end effector. Doing this yields a data-

set of 15,000 data points, which is a large enough amount to

attempt a regression analysis using artificial intelligence

techniques.29 Furthermore, analysis of the values in the

dataset shows that all of the input and output values are

unique, allowing for unique mapping from the inputs to

outputs. While this dataset could have been generated

experimentally, through robot positioning and measure-

ment of joint angles, this would have taken an extremely

long time and would have added the problem of measure-

ment imprecision and errors. Generating dataset in the

manner described in this article was chosen by the authors

because of the wish to test the possibility of using an artifi-

cially generated dataset for ANN training.

Multilayer perceptron regressor

MLP is a type of a feed-forward ANN, consisting of an

input layer, output layer, and at least one hidden layer,41

consisting of one or more artificial neurons.42 The value of

each neuron starting with inputs is propagated to the neu-

rons in the next layer over connections. Each connection

has a certain weight, which signifies the importance of the

value of that neuron to the value of the neuron it is con-

nected to. The sum of values of all neurons of the previous

layer connected to the current neuron is then transformed

using the activation function of the neuron in question and

the new value of that neuron is calculated.43 The value of

the input neurons is weighted, summed, and transformed

over each neuron in the first hidden layer, and this is

repeated for each following layer until the final, output,

layer is reached and the values of neurons are weighted

and summed giving the output value.44,45

From the above, it can be seen that the weights of the

connections play an important part in value determined as

the output. Because of this property, it is important to set

connection weights as accurately as possible, which is done

in the training stage during which the data stored in the

dataset are used to adjust the connection weights.43,45

Each of the inputs xi has a corresponding weight qn

stored in vector Y 0 ¼ q1 q2 q3 � � � qn½ �T .46 Each layer

in neural network has its own weight vector Y in which the

number of elements represents the number of connections

from that layer to the following one.42 The input values of

the neural network can be defined as43

z ¼ X � Y 0 (6)

where X is the vector of inputs described in equation (7) and

Y 0 is the set of weights for the connections connecting the

input layer of the neural network to the first hidden layer.

The output value of the neurons is calculated as

f X kð Þ ¼ F X k � Yð Þ ¼ F x1 � q1 þ x2 � q2 þ � � � þ xn � qnð Þ
(7)

where F is the activation function of neuron and k is the

number of layers in ANN, with k ¼ 0 for input layer.43,47 In

other words, neuron output value is the value of its activa-

tion function for the weighted sum of its inputs. The value

of each neuron is calculated this way, with appropriate

weights, until the output layer is reached and its value is

calculated.44 Initially, the weights of the neurons are set to

randomly selected values.44,45 These randomly selected

values, in most cases, do not provide satisfactory results

and need to be adjusted.43,48

Figure 1. Diametric view of the robotic manipulator with axes
displayed40 (Axes 1–6: Rotational axes of the robotic
manipulator).

Table 1. The upper and lower limits of each joint of the robotic
manipulator for ABB IRB 120 robotic manipulator, obtained from
the manufacturer’s product specification.40

Joint Lower limit (�) Upper limit (�) Range (�)

1 �165 165 330
2 �110 110 220
3 �70 110 180
4 �160 160 320
5 �120 120 240
6 0 360 360

4 International Journal of Advanced Robotic Systems

The error of the neural network is propagated back

through the network (meaning, in the direction from the

output neuron to the input neurons), with the goal of adjust-

ing the connection weights.49,50 Gradients are used to allow

the adjustment of values depending on their difference

from the goal value, where error E ¼ 0.51 The connections

that have a higher difference from the goal value will have

a higher adjustment value compared to those that are close

to the goal. Once the final gradient Y 0 (at inputs) is calcu-

lated, the gradient is updated using

Y new ¼ Y old �
a
m
�
@

Xn

i¼0
ðyi�ŷ iÞ

2

2n

@Y
(8)

where a represents the learning rate of the ANN52,53 and m

is a total number of data points. The higher this rate is, the

faster the weights Y will get adjusted,54 but a too large

learning rate can cause issues with the backpropagation

diverging instead of converging toward E ¼ 0.55,56

In addition to value of neurons, there is another value

taken into account in each layer. This value is referred to as

bias and marked with bi. Bias is the value that allows the

adjustment of the origin point of the activation func-

tion.43,57 This enables neural networks to be adjusted in a

way that allows solving problems, which have the solutions

near the origin point of the coordinate system of the solu-

tion space.58–60

Hyperparameter determination

In the previous sections, a number of values have been

mentioned, such as learning rate a, hidden layers, and the

number of neurons in each as well as the activation func-

tions. These values are parameters that describe the neural

network itself, or more precisely, its architecture. To dif-

ferentiate these parameters from parameters contained

within the neural network, namely the values of weights

Y , these parameters are named hyperparameters.61,62

Values of hyperparameters determine how well the

ANN will perform the task it was designed to. The hyper-

parameters of the neural network varied in this article are

hidden layers (number of layers and neurons per each

layer63), activation function of the neurons, solver, initial

learning rate, type of learning rate adjustment, and regular-

ization parameter L2.51,64,65 The values of hyperparameters

used in the research are given in Table 2.

The total number of combinations, that is, ANN archi-

tectures, can be calculated as a product of numbers of pos-

sible values for each hyperparameter, which means that the

total of ANN architectures tested is 10,240.

The hyperparameters are tested using the grid search

method.67 In grid search method, the combination of each

of the above parameters is given, and a neural network with

those hyperparameters is calculated.68,69 Additionally, each

combination of parameters is executed 10 times due to the

cross-validation process described in the following section.

Solution quality estimation

After the training using the parameters obtained using an

iteration of grid search, the other part of the dataset is used

as the testing set. In testing, the trained MLP attempts to

determine the value of the set inputs, which are compared

to the real outputs. The difference between this process and

training is that no adjustment is done in this part—there is

no backpropagation, just the forward. This enables the

quality of the neural network to be determined, as the val-

ues it predicts are compared to the values that have not been

used in training and as such did not have an effect on the

trained weights of the neural network. Once the predicted

set ŷ train is calculated, it can be compared to the actual

result values of the training set ytrain.43

Two values are used to determine the quality of the

solution: coefficient of determination (R2) and mean abso-

lute error (MAE).

The coefficient of determination is defined as the pro-

portion of variance in the dependent variable predictable

from the independent variables.70,71 This provides informa-

tion on how much of the variance in the data is explained by

the predicted data.72,73 Let vector y ¼ y1y2 � � � ym½ � contain

the real data points yi, and vector ŷ ¼ ŷ1ŷ2 � � � ŷm½ � contain

the predicted data, where each prediction ŷi corresponds to

the real data yi for each i.73–75

With these two values, the coefficient of determination

R2 is defined by76–78

R2 ¼ 1�
Xm

i
ðyi � ŷiÞ2Xm

i
ðyi � �yÞ2

(9)

MAE is defined as79

MAE ¼ 1

n

Xn

i

yi � ŷij j (10)

Table 2. Possible values for each hyperparameter used in grid
search for determining the best ANN architecture.a

Hyperparameter Possible values Number

Hidden layers (3), (3,3,3,3), (3,3),(4,3,3,4), (6,6,6,6),
(6,6), (7,6,6,7),(6,4,6), (6,12,12,6),
(10,10,10,10,10), (12,12,12),
(10,20,20,10), (4,4), (4), (6), (100),
(100,100,100), (100,100,100,100),
(30), (8,6,8)

20

Activation
function

Identity, ReLU, Tan-H, Logistic 4

Solver Adam, LBFGS 2
a 0.5, 0.1, 0.01, 0.00001 4
a Adjustment constant, adaptive, inverse scaling 4
L2 0.1, 0.001, 0.0001, 0.01 4

aFirst column gives hyperparameter values of which are defined in the
second column. Third column provides a total number of possible para-
meter values. For the “hidden layers” row, each tuple represents an
ANN setup, where each hidden layer is represented by an integer equal-
ing the number of neurons it contains.66

Baressi Šegota et al. 5

and it provides the information of what is the average dif-

ference between real values in vector y and corresponding

predicted values in vector ŷ.

R2 is defined in range 0; 1, with values closer to 1 rep-

resenting better quality solution,80 that is, solution that pre-

dicts values, which have less unexplained variance.81

Solutions with an R2 value of 0.9 or higher are taken in

consideration where available. In ideal solution, that is, a

perfect regressor, MAE would equal 0.82,83 With this in

mind, solutions with lower MAE are taken as better during

evaluation.

To assure the stability of the ANN models across

various sets of data, cross validation has been applied.

Tenfold cross validation has been used. This process

splits the dataset into 10 parts (folds) randomly. Then,

the training is repeated 10 times. In each of these itera-

tions, one of these folds is used as a testing set, while

the other nine are used as a training set. This allows for

the entirety of the dataset to be used for testing, deter-

mining the quality of the achieved solution across the

entirety of the dataset.

Results

This section represents the results obtained by the

authors during the research. First, the kinematic para-

meters and direct kinematic equations obtained are pre-

sented, followed by the results obtained from ANN

training.

Direct kinematic properties

Performing D-H method on the ABB IRB 120 robotic

manipulator yields the schematic shown in Figure 2. On

the schematic, each joint of the robotic manipulator is rep-

resented with a dotted circle. L0 through L5 represent the

origins of coordinate system of each joint, while x0

through x5, y0 through y5, and z0 through z5 represent the

axes of each coordinate system. With L6 being the end-

effector’s coordinate system, and x6, y6, and z6 being the

normal, sliding and approach and vectors, respectively.

Finally, symbols b1 through b6 represent the intersections

of the current coordinate systems x axis and the following

coordinate systems z axis.

For the observed robotic manipulator, the values of

kinematic parameters are presented in Table 3. By inserting

values from Table 3 into the homogenous transformation,

matrices of each joint using equation (1) matrices shown in

equations (24) to (29) are obtained.

T 1
0 ¼

cos q1ð Þ 0 �sin q1ð Þ 0

sin q1ð Þ 0 cos q1ð Þ 0

0 �1 0 l1

0 0 0 1

2
6664

3
7775 (11)

T 2
1 ¼

cos q2ð Þ �sin q1ð Þ 0 l2�cos q2ð Þ
sin q2ð Þ cos q1ð Þ 0 l2�sin q2ð Þ
0 0 1 0

0 0 0 1

2
6664

3
7775 (12)

T 3
2 ¼

cos q3ð Þ 0 �sin q3ð Þ l3cos q3ð Þ
sin q3ð Þ 0 cos q3ð Þ l3�sin q3ð Þ
0 �1 0 0

0 0 0 1

2
6664

3
7775 (13)

T 4
3 ¼

cos q4ð Þ 0 �sin q4ð Þ 0

sin q4ð Þ 0 cos q4ð Þ 0

0 1 0 0

0 0 0 1

2
6664

3
7775 (14)

Figure 2. Simplified schematic of the modeled robotic manipu-
lator with coordinate systems determined using D-H method
(Dotted circle: manipulator joint; L0–L6: coordinate system ori-
gins; x0–x6, y0–y6, z0–z6: coordinate system axes; b1–b6: x and z
axes intersection points). D-H: Denavit–Hartenberg.

Table 3. Kinematic parameters of the robotic manipulator
determined using the D-H method.

k 1 2 3 4 5 6

qk q1 q2 q3 q4 q5 q6

ak (m) 0 l2 l3 0 0 0
dk (m) l1 0 0 l4 0 l6
ak (rad) � p

2 0 � p
2

p
2 � p

2 0

6 International Journal of Advanced Robotic Systems

T 5
4 ¼

cos q5ð Þ 0 �sin q5ð Þ 0

sin q5ð Þ 0 cos q5ð Þ 0

0 �1 0 0

0 0 0 1

2
6664

3
7775 (15)

and

T 6
5 ¼

cos q6ð Þ �sin q6ð Þ 0 0

sin q6ð Þ cos q6ð Þ 0 0

0 0 1 0:147

0 0 0 1

2
6664

3
7775 (16)

Multiplication of this matrix per equation (2) yields the

homogenous transformation matrix of the robotic manipu-

lator as follows

T 6
0 ¼

T 00 T 01 T 02 T 04

T 10 T 11 T 12 T 14

T 20 T 21 T 22 T 24

T 30 T 31 T 32 T 34

2
6664

3
7775 (17)

where

T 00 ¼ S1S4 þ C1C4C23ð ÞC5 � S5S23C1ð ÞC6

þ S1C4 � S4C1C23ð ÞS6

(18)

T 10 ¼ S1C4C23 � S4C1ð ÞC5 � S1S5S23ð ÞC6

� S1S4C23 þ C1C4ð ÞS6

(19)

T 20 ¼ � S5C23 þ S23C4C5ð ÞC6 þ S4S6S23 (20)

T 30 ¼ 0 (21)

T 01 ¼ � S1S4 þ C1C4C23ð ÞC5 þ S5S23C1ð ÞS6

þ S1C4 � S4C1C23ð ÞC6

(22)

T 11 ¼ �S1C4C23 þ S4C1ð ÞC5 þ S1S5S23ÞS6

� S1S4C23 þ C1C4ð ÞC6

(23)

T 21 ¼ S5C23 þ S23C4C5ð ÞS6 þ S4S23C6 (24)

T 31 ¼ 0 (25)

T 02 ¼ � S1S4 þ C1C4C23ð ÞS5 � S23C1C5 (26)

T 12 ¼ �S1C4C23 þ S4C1ð ÞS5 � S1S23C5 (27)

T 22 ¼ S5S23C4 � C5C23 (28)

T 32 ¼ 0 (29)

T 03 ¼ � l4S1S4S5 � l4S5C1C4C23 � l4S23C1C5

� l1S23C1 þ l3C1C2 þ l5C1C23

(30)

T 13 ¼ � l4S1S5C4C23 � l4S1S23C5 � l1S1S23

þ l3S1C2 þ l5S1C23 þ l4S4S5C1

(31)

T 23 ¼ � l3S2 þ l4S5S23C4 � l5S23 � l4C5C23

� l1C23 þ l2

(32)

and

T 33 ¼ 1 (33)

Equations (31) to (46) represent each of the elements of

the matrix T 6
0, defined in equation (30). Each of the ele-

ments l1 through l6 represent a length of a given link of the

robotic manipulator, starting from the base to the end effec-

tor. Elements S and C represent a shortened form of trigo-

nometric functions sine and cosine. The indexes of those

elements represent angle of the joints the trigonometric

function was used on. For example, sin q1ð Þ becomes S1,

or cos q2ð Þ becomes C2. When more than one number is

indexed, it represents a sum of those angles. For example,

cos q1 þ q2 þ q3ð Þ becomes C123.

Multilayer perceptron regression

The results for the most successful models for each joint are

selected. As mentioned, models R2 and MAE performance

metrics on the training set are observed as the determination

of quality. The results are given in Table 5. Where possible,

a simpler architecture with comparable results was chosen

due to a simpler architecture having better training times.

Shorter training times are apparent in the simpler neural

networks (where simpler means a lower number of neurons)

due to the lower number of connection gradients and weights

that need to be calculated during the backpropagation stage

in training. The ratio of MAE and the total range for the joint

as given in Table 1 are also presented in Table 4.

Discussion

The obtained results demonstrate a successful regression of

the inverse kinematics problem. All the solutions achieve

the MAE, which is smaller than 1% of the possible joint

angle range. Only model which has an error larger than 1�

or 0.1% of the joint angle range is the q6. The larger error of

the q6 can be explained by the fact that the dataset does not

contain the tool orientation data, which has a large influ-

ence on the joint in question. From Figures 1 and 2, it can

be seen that joint 6 is the final torsion joint of the robotic

manipulator, meaning its direct influence is not exhibited

on the X, Y, and Z positioning of the end-effector position.

R2 scores achieved by the networks are above 0.9 in all

Table 4. Percentage error for each joint in regards to its
maximum movement range.

Joint MAE (�) s MAE
Range ð%Þ

q1 0.06784 0.01493 0.02056
q2 0.04062 0.01280 0.01846
q3 0.04883 0.01132 0.02713
q4 0.12098 0.03151 0.03781
q5 0.02125 0.00656 0.00885
q6 1.56557 0.04419 0.43489

MAE: mean absolute error.

Baressi Šegota et al. 7

cases except for the q6 output, which can be explained in

the same manner as the high MAE for the regressed angle

value of the sixth joint. Except for the q6, the worst per-

forming network in terms of R2 score is the regressor for the

third joint q3, with R2 score of 0.9. Still, even with a com-

paratively low R2 score, it achieves a low MAE of 0.04�.
Except for the q6, in terms of the MAE, the worst perform-

ing regression model is q4, with MAE of 0.12�, still a

relatively high R2 score is displayed (0.94) by the regres-

sion model in question. Standard errors across the 10 folds

of the algorithms are low for both metrics used, indicating

stable solutions for all the regression goals.

Observing the hyperparameters, it can be seen that the

number of the hidden layers and neurons per layer tend

toward the higher end of the tested hyperparameters. Four

of the best performing networks (for the regression goals

q1; q2; q4; q5) have the largest tested number of neu-

rons—four hidden layers with 100 neurons each. It should

be noted that all four of those networks used the hyperbolic

tangent (Tanh) activation function inside the neurons and

the LBFGS solver. Learning rate tended toward higher end

of the tested parameters, except for the q4, which used a

comparatively low starting value. Adaptive learning rate

yielded the best results except for q5 and q6, which used

inverse scaling and constant learning rates, respectively. L2

regularization parameter varies between the networks. In

the case of a higher L2 parameter being selected, it can be

concluded that those models (q2 and q6) had certain inputs,

which had a high influence on the outputs, and that influ-

ence needed to be lowered, which was achieved through the

regularization.

Conclusion

This article presents the application of MLP ANN for the

goal of inverse kinematics modeling. Grid search algorithm

has been applied and the best hyperparameters for each of

the six output goals have been determined. The scores

achieved are satisfactory, with all models achieving an

error below 1% of the appropriate output range. The models

of the first five joints tended toward the largest tested net-

works. This indicates that higher quality results, if such are

needed, may possibly be achieved with even larger net-

works. The last joint having a lower regression score

indicates a lack of information, due to it only being affected

by the orientation of the end-effector data, which was not

used in the dataset. This implies that modeling of similarly

configured robotic manipulators using the described

method may require that data if a high precision is needed

for the final joint.

Future work will include the testing of other methods,

which may yield simpler to use models, such as symbolic

regression, and the expansion of the dataset include obsta-

cle data.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed the receipt of following financial support

for the research, authorship, and/or publication of this article: This

research was (partly) supported by the CEEPUS network CIII-

HR-0108, European Regional Development Fund under the grant

KK.01.1.1.01.0009 (DATACROSS), project CEKOM under the

grant KK.01.2.2.03.0004, CEI project “COVIDAi” (305.6019-

20), University of Rijeka scientific grant uniri-tehnic-18-275-

1447 and the project VEGA 1/0504/17.

ORCID iD

Zlatan Car https://orcid.org/0000-0003-2817-9252

References

1. Xu W, Liang B, Li C, et al. Path planning of free-floating

robot in cartesian space using direct kinematics. Int J Adv

Robot Syst 2007; 4(1): 17–26.

2. Wang J, Li Y, and Zhao X. Inverse kinematics and control of

a 7-DOF redundant manipulator based on the closed-loop

algorithm. Int J Adv Robot Syst 2010; 7(4): 37.

3. Božek P and Lozhkin A. The precision calculating method of

robots moving by the plane trajectories. Int J Adv Robot Syst

2019; 16(6). DOI: 1729881419889556.

4. Wei Y, Nie X, Hiraga M, et al. Developing end-to-end control

policies for robotic swarms using deep Q-learning. J Adv

Comput Intell Intell Inform 2019; 23(5): 920–927.

5. Sassi MA, Otis MJ, and Campeau-Lecours A. Active stability

observer using artificial neural network for intuitive physical

Table 5. The best architecture found during the grid search process.a

Joint Hidden layers Activation function Solver a a Adjustment L2 R2 s MAE s

q1 (100, 100, 100, 100) Tanh Adam 0.1 Adaptive 0.001 0.98 0.02 0.07 0.01
q2 (100, 100, 100, 100) Tanh LBFGS 0.5 Adaptive 0.1 0.99 0.01 0.04 0.01
q3 (100, 100, 100) ReLU Adam 0.1 Adaptive 0.01 0.90 0.04 0.04 0.01
q4 (100, 100, 100, 100) Tanh LBFGS 1e-05 Adaptive 0.01 0.94 0.02 0.12 0.03
q5 (100, 100, 100, 100) Tanh LBFGS 0.5 Inverse scaling 0.001 0.99 0.00 0.02 0.01
q6 (10, 10, 10, 10, 10) Identity Adam 0.1 Constant 0.1 0.7 0.00 1.57 0.04

MAE: mean absolute error.
aFor each joint best hyperparameters and achieved performance metrics are given.

8 International Journal of Advanced Robotic Systems

https://orcid.org/0000-0003-2817-9252
https://orcid.org/0000-0003-2817-9252
https://orcid.org/0000-0003-2817-9252

human–robot interaction. Int J Adv Robot Syst 2017; 14(4).

DOI: 1729881417727326.

6. Tang SH, Ang CK, Ariffin MKABM, et al. Predicting the

motion of a robot manipulator with unknown trajectories

based on an artificial neural network. Int J Adv Robot Syst

2014; 11(10): 176.

7. Baressi Šegota S, And̄elić N, Lorencin I, et al. Path planning

optimization of six-degree-of-freedom robotic manipulators

using evolutionary algorithms. Int J Adv Robot Syst 2020;

17(2). DOI: 1729881420908076.

8. Wei Y, Hiraga M, Ohkura K, et al. Autonomous task alloca-

tion by artificial evolution for robotic swarms in complex

tasks. Artif Life Robot 2019; 24(1): 127–134.

9. Car Z and Mikac T. Evolutionary approach for solving cell-

formation problem in cell manufacturing. Adv Eng Inform

2006; 20(3): 227–232.

10. Srinivas S, Sarvadevabhatla RK, Mopuri KR, et al. A taxon-

omy of deep convolutional neural nets for computer vision.

Front Robot AI 2016; 2: 36.

11. Jia W, Mou S, Wang J, et al. Fruit recognition based on pulse

coupled neural network and genetic Elman algorithm appli-

cation in apple harvesting robot. Int J Adv Robot Syst 2020;

17(1).

12. Joshy P and Supriya P. Implementation of robotic path plan-

ning using ant colony optimization algorithm. In: 2016 Inter-

national conference on inventive computation technologies

(ICICT) (ed Y Robinson), volume 1. Coimbatore, India,

26–27 August 2016, pp. 1–6. IEEE.

13. Sun C, Li G, and Xu J. Adaptive neural network terminal

sliding mode control for uncertain spatial robot. Int J Adv

Robot Syst 2019; 16(6). DOI: 1729881419894065.

14. Sapietová A, Saga M, Kuric I, et al. Application of optimiza-

tion algorithms for robot systems designing. Int J Adv Robot

Syst 2018; 15(1). DOI: 1729881417754152.

15. Zhang P, Xiong C, Li W, et al. Path planning for mobile robot

based on modified rapidly exploring random tree method and

neural network. Int J Adv Robot Syst 2018; 15(3): DOI:

1729881418784221.

16. Wenhui Z, Hongsheng L, Xiaoping Y, et al. Adaptive robust

control for free-floating space robot with unknown uncer-

tainty based on neural network. Int J Adv Robot Syst 2018;

15(6). DOI: 1729881418811518.

17. El_Jerjawi NS and Abu-Naser SS. Diabetes prediction using

artificial neural network. J Adv Sci 2018; 124: 1–10.

18. Lorencin I, And̄elić N, Mrzljak V, et al. Genetic algorithm

approach to design of multi-layer perceptron for combined

cycle power plant electrical power output estimation. Ener-

gies 2019; 12(22): 4352.

19. Briones JC, Flores B, and Cruz-Cano R. Multi-mode radar

target detection and recognition using neural networks. Int J

Adv Robot Syst 2012; 9(5): 177.

20. Villegas R, Yang J, Ceylan D, et al. Neural kinematic

networks for unsupervised motion retargetting. In: Pro-

ceedings of the IEEE conference on computer vision and

pattern recognition (eds D Plummer and I Torwick), Salt

Lake City, UT, USA, 18–23 June 2018, pp. 8639–8648.

IEEE.

21. Nemeth M, Nemethova A, and Michalconok G. Determination

issues of data mining process of failures in the production sys-

tems. In: Computer science on-line conference (ed R Silhavy),

Zlin, Czech Republic, 24 April 2019, pp. 200–207. Cham:

Springer.

22. Ghafil HN, László K, and Jármai K. Investigating three learn-

ing algorithms of a neural networks during inverse kinematics

of robots. In: Solutions for sustainable development: proceed-

ings of the 1st international conference on engineering solu-

tions for sustainable development (ICESSD 2019) (eds K

Szita Tóthné, K Jármai, and K Voith), 3–4 October 2019,

Miskolc, Hungary, p. 33. CRC Press.

23. Demby’s J, Gao Y, and DeSouza G. A study on solving the

inverse kinematics of serial robots using artificial neural net-

work and fuzzy neural network. In: 2019 IEEE international

conference on fuzzy systems (FUZZ-IEEE) (ed J Garibaldi),

New Orleans, LA, USA, 23–26 June 2019, pp. 1–6. IEEE.

24. Ghasemi J, Moradinezhad R, and Hosseini M. Kinematic

synthesis of parallel manipulator via neural network

approach. Int J Eng 2019; 30(9): 1319–1325.

25. Dash KK, Choudhury B, and Senapati S. Inverse kinematics

solution of a 6-dof industrial robot. In: Soft computing in data

analytics. Singapore: Springer, 2019, pp. 183–192.

26. Zarrin A, Azizi S, and Aliasghary M. A novel inverse kine-

matics scheme for the design and fabrication of a five degree

of freedom arm robot. Int J Dyn Control 2020; 8: 1–11.

27. Takatani H, Araki N, Sato T, et al. Neural network-based

construction of inverse kinematics model for serial redundant

manipulators. Artif Life Robot 2019; 24: 1–7.

28. Dereli S and Köker R. A meta-heuristic proposal for inverse

kinematics solution of 7-dof serial robotic manipulator: quan-

tum behaved particle swarm algorithm. Artif Intell Rev 2020;

53: 949–964.

29. Lim DW and Lee YK. On the number of training samples for

inverse kinematics solutions by artificial neural networks. In:

2019 16th International conference on ubiquitous robots

(UR) (ed K Minjun), Jeju, Korea (South), 24–27 June 2019,

pp. 61–64. IEEE.

30. Valayil TP, Selladurai V, and Ramaswamy NR. Kinematic

modeling of a serial robot using Denavit-Hartenberg method

in Matlab. (TAGA) J graph technol 2018; 14: 2347–2445.

http://www.tagajournal.com/gallery/v14.230.pdf (accessed

18 February 2020).

31. Spong MW and Vidyasagar M. Robot dynamics and control.

Chichester: John Wiley & Sons, 2008.

32. Siciliano B and Khatib O. Springer handbook of robotics.

Berlin: Springer, 2016.

33. Tsai LW. Robot analysis: the mechanics of serial and paral-

lel manipulators. New York, NY: John Wiley & Sons, 1999.

34. Ramos PB, Medina JM, Salcedo MC, et al. Application of the

Denavit-Hartenberg method to estimate the positioning errors

of an automated XYZ cartesian table. Contemp Eng Sci 2018;

11: 3483–3493.

Baressi Šegota et al. 9

http://www.tagajournal.com/gallery/v14.230.pdf

35. Craig JJ. Introduction to robotics: mechanics and control,

3/E. Chennai: Pearson Education India, 2009.

36. Li N and Ping X. Research on DH parameter modeling meth-

ods. Int J Comput Sci Control Eng 2019; 7(1): 8–16.

37. Becerra Y, Arbulu M, Soto S, et al. A comparison among the

Denavit-Hartenberg, the screw theory, and the iterative meth-

ods to solve inverse kinematics for assistant robot arm. In:

International conference on swarm intelligence. Chiang Mai,

Thailand, 26–30 July 2019, pp. 447–457. New York:

Springer.

38. Azhar MW. Kinematics modelling of robot manipulator using

solidworks. PhD Thesis, Universitas Muhammadiyah Sura-

karta, Indonesia, 2019.

39. Ying SJ, Dubey R, and Sundarrao S. Gyroscope for robot to

sense the balance. Int J Robot Eng 2018; 3(2): 012.

40. ABB, Affolternstrasse 44 8050 Zurich Switzerland. Product

Specification IRB-120, 1st ed. Zurich, Switzerland: ABB

Group, 2019.

41. Lorencin I, And̄elić N, Španjol J, et al. Using multi-layer

perceptron with Laplacian edge detector for bladder cancer

diagnosis. Artif Intell Med 2019; 102: 101746.

42. Alom MZ, Taha TM, Yakopcic C, et al. A state-of-the-art

survey on deep learning theory and architectures. Electronics

2019; 8(3): 292.

43. Goodfellow I, Bengio Y, and Courville A. Deep learning.

Cambridge, MA: MIT Press, 2016.

44. Hastie T and Friedman . Elements of statistical learning: data

mining, inference, and prediction) Berlin, Germany:

Springer, 2003.

45. Bishop CM. Pattern recognition and machine learning. Ber-

lin: Springer Science þ Business Media, 2006.

46. Shamsolmoali P, Zareapoor M, Jain DK, et al. Deep convolu-

tion network for surveillance records super-resolution. Multi-

med Tools Appl 2019; 78(17): 23815–23829.

47. Nagarajan HP, Mokhtarian H, Jafarian H, et al. Knowledge-

based design of artificial neural network topology for additive

manufacturing process modeling: a new approach and case

study for fused deposition modeling. J Mech Des 2019;

141(2): 021705.

48. Ravanelli M, Brakel P, Omologo M, et al. A network of deep

neural networks for distant speech recognition. In: 2017 IEEE

international conference on acoustics, speech and signal pro-

cessing (ICASSP). IEEE, New Orleans, LA, USA, 5–9 March

2017, pp. 4880–4884.

49. Pineda FJ. Generalization of back-propagation to recurrent

neural networks. Phys Rev Lett 1987; 59(19): 2229.

50. Bhattacherjee A, Roy S, Paul S, et al. Classification approach

for breast cancer detection using back propagation neural

network: a study. In: Deep learning and neural networks:

concepts, methodologies, tools, and applications. Pennsylva-

nia: IGI Global, 2020, pp. 1410–1421.

51. Loshchilov I and Hutter F. Fixing weight decay regularization

in Adam. 2017.

52. Ranganathan V and Natarajan S. A new backpropagation

algorithm without gradient descent. 2018; arXiv:1802.

00027, 1–15.

53. Zhou X. Understanding the convolutional neural networks

with gradient descent and backpropagation. J Phys Conf

Series 2018; 1004: 012028.

54. Smith LN. A disciplined approach to neural network hyper-

parameters: part 1–learning rate, batch size, momentum, and

weight decay. 2018; arXiv:1803.09820, 1–21.

55. Takase T, Oyama S, and Kurihara M. Effective neural net-

work training with adaptive learning rate based on training

loss. Neural Netw 2018; 101: 68–78.

56. Li H, Xu Z, Taylor G, et al. Visualizing the loss landscape of

neural nets. In: Advances in neural information processing

systems. Montréal, Canada, December 2018, pp. 6389–6399.

57. Alvi M, Zisserman A, and Nellåker C. Turning a blind eye:

explicit removal of biases and variation from deep neural

network embeddings. In: Proceedings of the european con-

ference on computer vision (ECCV) (eds A Vedaldi, H

Vedaldi, Th Brox, and J Frahm), Munich, Germany, 8–14

September 2018. Berlin, Germany: Springer.

58. Rahaman N, Baratin A, Arpit D, et al. On the spectral bias of

neural networks 2018; arXiv:1806.08734v3, 1–23.

59. Gunasekar S, Lee JD, Soudry D, et al. Implicit bias of gra-

dient descent on linear convolutional networks. In: Advances

in neural information processing systems. Montréal, Canada,

2018, pp. 9461–9471.

60. Yang H, Su J, Zou Y, et al. Layout hotspot detection with

feature tensor generation and deep biased learning. IEEE

Trans Comput-Aided Des Integ Circuits Syst 2018; 38(6):

1175–1187.

61. Dauphin Y, De Vries H, and Bengio Y. Equilibrated adaptive

learning rates for non-convex optimization. In: Advances in

neural information processing systems (eds M Jordan, Y

LeCun, and S Solla), Montreal, Quebec, Canada, 7–12

December 2015, pp. 1504–1512.

62. Baressi Šegota S, Lorencin I, And̄elić N, et al. Improvement

of marine steam turbine conventional exergy analysis by

neural network application. J Marine Sci Eng 2020; 8(11):

884.

63. Wu R, Huang H, Qian X, et al. A L-BFGS based learning

algorithm for complex-valued feedforward neural networks.

Neural Process Lett 2018; 47(3): 1271–1284.

64. Car Z, Baressi Šegota S, And̄elić N, et al. Modeling the

spread of COVID-19 infection using a multilayer perceptron.

Comput Math Method Med 2020; 2020: 1–10.

65. Sysoev O and Burdakov O. A smoothed monotonic regres-

sion via l2 regularization. Knowl Inform Syst 2019; 59(1):

197–218.

66. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn:

machine learning in python. J Mach Learn Res 2011; 12:

2825–2830.

67. Yasin H, Caraka RE, Hoyyi A, et al. Prediction of crude oil

prices using support vector regression (SVR) with grid

search-cross validation algorithm. Glob J Pure Appl Math

2016; 12(4): 3009–3020.

68. Syarif I, Prugel-Bennett A, and Wills G. SVM parameter

optimization using grid search and genetic algorithm to

10 International Journal of Advanced Robotic Systems

improve classification performance. Telkomnika 2016; 14(4):

1502.

69. Li L, Tan Y, He C, et al. Case study of the effect of grid-

search objective function in microseismic source location. In:

International conference and exhibition (ed M Francis), Bar-

celona, Spain, 3–6 April 2016, pp. 168–168. Society of

Exploration Geophysicists and American Association of

Petroleum.

70. Kaplan S and Gürcan EK. Comparison of growth curves

using non-linear regression function in Japanese quail. J Appl

Anim Res 2018; 46(1): 112–117.

71. Piepho HP. A coefficient of determination (r2) for linear

mixed models. Biometrical Journal 2018; 61(4): 860–872.

72. Yang SJ, Lu OH, Huang AY, et al. Predicting students’ aca-

demic performance using multiple linear regression and prin-

cipal component analysis. J Inform Process 2018; 26:

170–176.

73. Zeinadini Meymand A, Bagheri Bodaghabadi M, Moghimi

A, et al. Modeling of yield and rating of land characteristics

for corn based on artificial neural network and regression

models in southern Iran. Desert 2018; 23(1): 85–95.

74. Dershem R, Chu X, Wood G, et al. Response to ‘regression to

the mean, apparent data errors, and biologically extraordinary

results’. Int J Obes 2018; 42(4): 951.

75. Ingrassia S and Punzo A. Cluster validation for mixtures of

regressions via the total sum of squares decomposition.

J Classif 2020; 37: 526–547.

76. Dong Z, Xie L, Yang Y, et al. Local sensitivity analysis of

kinetic models for cellulose pyrolysis. Waste Biomass Valori

2019; 10(4): 975–984.

77. Kovaleva E, Dolomatov M, Latypov Ð, et al. Possibility of

predicting activation energy for viscous flow in five-

membered naphthenes by means of structural descriptors.

Am J Phys Chem 2019; 8(1): 26–31.

78. Kasuya E. On the use of r and r squared in correlation and

regression. Ecol Res 2019; 34(1): 235–236.

79. Camero A, Toutouh J, and Alba E. A specialized evolutionary

strategy using mean absolute error random sampling to

design recurrent neural networks. 2019; arXiv:1909.02425,

1–10

80. Kertész Á, Hlaváčová Z, Vozáry E, et al. Relationship

between moisture content and electrical impedance of carrot

slices during drying. Int Agrophys 2015; 29(1): 61–66.

81. Schober P, Boer C, and Schwarte LA. Correlation coeffi-

cients: appropriate use and interpretation. Anesth Analg

2018; 126(5): 1763–1768.

82. Vimala S and Vivekanandan K. A novel biclustering with

mean absolute difference similarity measure for collaborative

filtering recommender system. Int J Pure Appl Math 2018;

118(20): 1–7.

83. Langdon WB, Dolado J, Sarro F, et al. Exact mean absolute

error of baseline predictor, marp0. Inform Softw Technol

2016; 73: 16–18.

Baressi Šegota et al. 11

	Utilization of multilayer perceptron for determining the inverse kinematics of an industrial robotic manipulator
	Introduction
	State-of-the-art
	Hypotheses

	Methodology
	Direct kinematic equation determination
	Dataset generation
	Multilayer perceptron regressor
	Hyperparameter determination
	Solution quality estimation

	Results
	Direct kinematic properties
	Multilayer perceptron regression

	Discussion
	Conclusion
	Declaration of conflicting interests
	Funding
	ORCID iD
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

