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Abstract: This article deals with solving the urgent scientific problem of the diagnostics of drives
of technological robotized workplaces with support of sensors. The dependence of diagnostic
parameters on the technical state of drives of automated technological systems, which is of great
economic importance for industrial enterprises, is being investigated. Diagnostic models have been
developed based on sensory systems to diagnose drive models of technological robotized workplaces.
The use of these models may also include monitoring systems in which it is possible to build a system
for identifying detected changes. These systems identify many contradictory changes and thereby
reduce the false alarm frequency of monitoring sensory systems. Numerous methods for solving
technical diagnostics problems are often based on methods based on mathematical models describing
work processes, as well as on spectral analysis of measured parameters, such as vibrations, noise,
and electric current. A fuzzy inference system for assessing the technical condition, a system for
estimating the residual resource of drives, and asystem for calculating diagnostic intervals based on
fuzzy knowledge have been developed. Based on the historical trend of the diagnostic parameters, the
intelligent diagnostic system determines the current technical condition of the actuator and predicts
future technical condition changes, determines the remaining service life and the time intervals for
diagnostics. The analysis of the time spent on planned preventive maintenance of technological
equipment makes it possible to conclude that, after the modernization of equipment in 2018, the
repair time was reduced from 350 h to 260 h per year (26%). Since 2019, there is a tendency to increase
repair time by 30 h each year.

Keywords: sensor; diagnostic methods; fuzzy inference system; diagnostic intervals

1. Introduction

Failure of drives leads to significant economic losses and can be dangerous to human
life and health. For the timely detection of defects, assessment of the technical condition,
and prediction of the resource of their work, effective systems for diagnosing and predicting
the residual resource are required.

At present, the theoretical foundations for assessing the technical state of drives are
insufficiently developed due to the complexity of degradation of physical processes occur-
ring in such systems, the complexity of the mathematical formalization of the description
of these processes and defects, with a limited number of measured diagnostic parameters,
with measurement errors. Due to the above reasons, there are no descriptions of the regu-
larities between the diagnostic parameters and the states of the drive systems of mechanical
engineering objects. Therefore, it is not possible to systematically solve the problems of
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diagnosing and assessing the residual resource, and planning the maintenance and repair
of drives.

Theoretical foundations of sensory systems for diagnosis of drive models of techno-
logical robotic workplaces are elaborated in works [1–12] and by several other authors. The
principles of sensory systems for diagnostics of technological workplaces and parametric
diagnostics of technological systems [13] are taken into account. Approaches to estimating
the residual life of technical objects based on a model in the form of a system of differential
equations are analyzed in [14,15].

According to the source of information for sensory systems of drive model diagnostics
of technological robotic workplaces, a distinction is made between test and functional
diagnostics. Diagnostic methods are classified according to the type of physical processes
that occur in the object: mechanical, electrical, vibration, acoustic, ultrasonic, shock pulses,
thermal, magnetic, photometric, etc.

Diagnostic methods are classified according to the following characteristics [16]:

• The degree of information content;
• Types of diagnostic information;
• Degree of utilization of technical means;
• Stages of operation;
• Depth of diagnostics.

The following diagnostic methods are distinguished according to the level of aware-
ness [16]:

• The time interval method used to analyze downtime, determine reliability indicators,
monitor the operation of the control system, and obtain cyclograms;

• Reference module method based on comparison of experimental data or calculated
values and quality indicators;

• Method of reference dependencies based on comparison of measured diagnostic
parameters with reference diagnostic parameters;

• Spectral method based on measuring components of complex vibration or acoustic signals;
• The correlation method used to detect variations in the nature of the relationship

between the diagnostic parameters (cross correlation) or the change of the diagnostic
parameters over time (autocorrelation).

The relevance of applying fuzzy logic is to automate the diagnostic process. There
are many uncertainties in diagnostics. The variation in sensor readings is highly variable
when influenced by external (e.g., changes in temperature and load resistance torque) and
internal factors (e.g., changes in the magnetic flux of electric motors). Fuzzy logic provides
an effective means of representing uncertainties and inaccuracies. A comparison between
the traditional qualitative method and the fuzzy logic method is given in [17]. Fuzzy logic
can overcome the imprecise nature of uncertainty based on the use of fuzzy membership
function for dealing with uncertainty by providing a very precise approach [17].

The presence of mathematical means to reflect the fuzzy source information allows
you to build a model that is adequate to reality. The article proposes a methodology for
diagnosing technical systems and determining their residual life on the basis of fuzzy
logic. Currently, such a system of technical diagnostics, which would estimate the current
technical state of equipment and provide early detection of possible defects, as well as
predict their development in the future, has not yet been created. Modern diagnostic
methods are based on mathematical models, which do not reflect all possible signs of
developing defects. Therefore, the task of using a heuristic approach based on artificial
intelligence methods, namely, the theory of fuzzy sets becomes relevant. All of the above
confirms the need to develop diagnostic models and methods for assessing the current
technical state of equipment based on artificial intelligence technology.

Currently, a variety of mathematical models have been developed for the diagnostics
of drives. The literature reflects the results of the development of dynamic models on
differential, artificial neural networks and fuzzy logic. Dynamic models require for their
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implementation all parameters of the object, which are not always known [4,18–21]. Artifi-
cial neural networks are quite complex in their implementation [22,23]. As an alternative
to these methods, the use of fuzzy logic is proposed. The use of linguistic systems, rules
and rules of fuzzy logic, as well as approximate reasoning allows you to bring an expert’s
experience into the diagnostic system [3,5]. In such systems, complex relationships between
input and output are described by a set of rules of fuzzy logic, implying the use of linguistic
numbers instead of a complicated dynamic model.

Previous studies [24–63] in this field have only used current diagnostic parameter
values to determine the current technical condition of the actuators. This restriction
is removed in this article. The intelligent diagnostic system examines the trend of the
diagnostic parameters over the past period, determines the current technical state of the
actuators and predicts changes in the technical state in future time, and determines the
remaining service life and the time intervals for carrying out diagnostics. Details of the
technical condition of actuators of automated technological systems: the technical condition
of actuators is assessed as good. The equipment was upgraded and the electric motors of
the automated process systems were replaced three years prior.

The scientific novelty of the work lies in the fact that a new diagnostic model for de-
termining equipment defects and predicting its service life, based on a system of equations
with fuzzy cause–effect relations, is developed. This article deals with solving the urgent
scientific problem of the diagnostics of drives of technological robotized workplaces with
full support of sensors.

The work is aimed at solving a topical scientific problem of great economic importance,
which consists of the fact that, when using systems for assessing, predicting, and controlling
the technical state of drives, the reliability and efficiency of operation increases, for example,
downtime decreases, the volume of manufactured products increases, and technical costs
decrease, as well as maintenance and repair, and the number of accidents is reduced.

The rest of this article is organized as follows. Section 2 describes a methodology—
analysis of diagnostic methods for drives of technological systems. Section 3 is about the
development of diagnostic models. In Section 4 describes the scheme of a fuzzy inference
system for technical state evaluation with three input variables x, D, t. Section 5 is a system
diagram of the fuzzy estimates of the derivate of the residual life of the input variables
x, D, W, t. The development of a fuzzy inference system for calculating drive diagnostics
intervals is described in Section 6. The experiments, conclusion, and summarization are
drawn in Sections 7 and 8.

2. Methodology—Analysis of Diagnostic Methods for Drives of
Technological Systems

At present, sensor systems for diagnosing vibration diagnostics drives, which are
de-signed and developed by experts from the company Vibroacoustic Systems and Tech-
nologies, are commonly used throughout the engineering world, replacing sensory methods
for diagnosing working difficulties using the parameters of voltage, current, and electro-
magnetic field. Vibration detected almost all the errors with the drive, with the exception
of faults in the electrical insulation. It is possible to detect the moment when an electric
current flows through the damaged area.

The increasing complexity of diagnostic methods for operator and equipment always
leads to an increase in the number of measurement points and, consequently, an increase
in the cost of diagnostic systems, which include mainly sensors to record, as electrical and
non-electrical quantities. The economically optimal stationary diagnostic system will be a
system with a partial combination of sensory and diagnostic functions. Monitoring and
diagnosis are therefore possible to select a limited number of checkpoints in the nodes,
which are the strongest sources of vibration (noise) in the unit, but, to a large extent, deter-
mine their life. Most often, these are points on the housing assemblies of rolling bearings.
In the case of high-speed drives, in which bearings are the main sources of vibration, the
case can be used for two or three control points that are outside of the bearing system.
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Diagnostic and prediction methods for periodic vibration (noise) measurements use
vibration and noise as a diagnostic parameter. Most nodal defects begin to affect vibra-
tion and noise many months before the onset of an emergency. The only exceptions are
some manufacturing errors and errors resulting from a violation of the drive operating
instructions. They can occur at any stage of the life cycle of the machine and can evolve to
dangerous values in a short period of time [24]. Assuming such errors are missing, there is
no need to monitor drives with short measurement intervals, and it is therefore possible to
set up portable diagnostic systems for drives with measurement intervals of several weeks,
or even months.

The group of diagnostic methods considered requires deep knowledge of defect
development processes and their impact on vibration and noise parameters in all types of
diagnosed drives.

Developing diagnostic methods for periodic vibration and noise measurements that
automate diagnostics and prognosis has the same difficulties as developing methods that
require operator decisions. The most difficult problem is selecting the results of those
measurements whose reliability is beyond doubt, especially if they differ from the results
of previous measurements. The complexity of this choice is compounded by the fact that
the cause of the differences may not only be the occurrence of defects or a change in the
operating modes of the machine, but also frequent operator errors when selecting the
location of the sensor or the quality of its installation. In addition, it is virtually impossible
to maintain the same operating mode in terms of load, rotational speed, and ambient
temperature during measurements taken at long intervals of the order of several weeks
or months.

Despite these difficulties, work is being done in many countries to develop methods
for automatic machine diagnostics using periodic vibration measurements, and there are
already many diagnostic systems in which they are used fairly effectively.

The most popular and complicated methods are the diagnostics and prediction of one-
time vibration measurements (noise). They are built on the basis of a different combi-nation
of the information technologies envisaged and are mostly used only by qualified profes-
sionals. A characteristic feature of these methods is the diagnostics of the machine nodes,
or even individual elements if they are the source of oscillations. The highest efficiency will
be achieved if experts make full use of the capabilities of spectral information technology.

A correct diagnosis of electrical circuits is very essential in industrial plants. For
ex-ample, the patterns of acoustic signals of a specific induction motor were analyzed.
Acoustic signals include information about motor state. The analysis of the patterns was
conducted for three states of induction motor using fast Fourier transform (FFT), shortened
method of frequencies selection (SMoFS-10), and linear support vector machine (LSVM).
The results of calculations suggest that the method is efficient and can be also used for
diagnostic purposes. Advantages are analyzed in [44].

3. Development of Diagnostic Models

Analysis of known diagnostic systems has shown that there is no general approach
to the design of diagnostic systems for drives of technological systems based on artificial
intelligence methods. The design of the diagnostic system for the drives of technological
systems is usually based on the mathematical model of the diagnosed object. Such models
are also very complex for simple assemblies, such as bearings. Moreover, in such a model,
there is no mechanism for the appearance of defects and failures, and their impact on the
target functions of the propulsion of technological systems is not taken into account [25–27].
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The logic–linguistic model for diagnostics and prediction of residual lifetime of drives
of technological systems, and for calculation of diagnostic intervals based on fuzzy logic
represents a system of equations:

x(t) = F(x(t0), t),
D(t) = G(x(ti), t),
Z(t) = H(x(t), D(t), t),
R(t) = W(x(t), D(t), Z(t), t),
∆t = V(x(t), D(t), R(t), t),

(1)

where x(t) = F(x(t0),t) is the equation of diagnostic parameters:

x(t) is a vector of diagnostic parameters;
t is an elaborated resource;
D(t) = G(x(ti), t) is the equation to calculate the trend diagnostic vector of the diagnos-
tic parameters;
ti is a set of moments of measurement of diagnostic parameters;
Z(t) = H(x(t), D(t), t) is the equation for assessment of technical condition;
R(t) = W(x(t), D(t), Z(t), t) is the equation for estimating residual life at time t;
∆t = V(x(t), D(t), R(t), t) is the equation to calculate diagnostic intervals.

The diagnostic and prediction model of the technology system drives was imple-
mented in the MatLab software product in the Fuzzy Logic Toolbox.

4. Development of a Fuzzy Inference System to Assess the Technical Condition
of Drives

The fuzzy inference system for technical state assessment is implemented on the basis
of a fuzzy knowledge, such as Mamdani, with three input variables: x, D, t. The diagram
of the fuzzy inference system is shown in Figure 1.
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Figure 1. Scheme of a fuzzy inference system for technical state evaluation with three input variables, x, D, t.

The Gaussian function was chosen as the basic function of the term M language vari-
able because it is relatively simple, differentiable, and it is defined by only two parameters,
which allows for the reduction of the computational complexity of the algorithm. As a basic
function of the L–H expressions of a language variable, they are selected from the function.

The selected Mamdani fuzzy inference, as the t-norm selected maximum defuzzifica-
tion method, is performed by a method of importance as it provides good accuracy and
fuzzy adjustment of the basic rate of knowledge. As adjustable weighting rule parameters
are used, the location of the maximum duration function of the language variable M varies.
The example of the function of the known input variables x, D, t is shown in Figures 2–4.
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The example of the function of the known output variable z is shown in Figure 5.
When using three linguistic variables with three terms in combination with logical

operations (AND, OR), we obtained seven rules reflecting the dependence of the technical
state on the values of diagnostic parameters, as shown in Figure 6.
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The response of the surface of the fuzzy inference system to the state of the art is shown
in Figure 7. Similar simulation results for mechatronic motion modules were obtained in [3],
where the MVTU software was used. The input linguistic variables were specified using
a Gaussian function, and the output linguistic variables were represented as triangular
functions to reduce computational cost. The disadvantage of these results [3] is that there
is no representation of the results in a three-dimensional space.
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5. Development of a Fuzzy Inference System for Estimating the Residual Life

The fuzzy derivative system for estimating the residual resource is implemented on a
fuzzy knowledge base of Mamdani type with input variables x, D, Z, and t. The scheme of
the fuzzy inference system is shown in Figure 8.
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The terms L, M, H of the input variables x, D, t are the same as in the fuzzy inference
system for technical state evaluation. The example of the expressions L, M, H of the input
variable Z is shown in Figure 9. The example of the expressions L, M, H of the output
variable R is shown in Figure 10.
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The system of fuzzy inference rules for the estimation of residual service life by
combining the logical operators AND, OR is shown in Figure 11.

Figure 12 shows the response of the fuzzy surface derivation of the estimated
residual life.
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6. Development of a Fuzzy Inference System for Calculation of Drive
Diagnostics Intervals

The fuzzy inference system for calculating diagnostic intervals is implemented on a
fuzzy knowledge base, such as Mamdani, with input variables x, D, Z, and t. The schematic
of the fuzzy inference system is shown in Figure 13.
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The terms L, M, H of the input variables x, D, t are the same as in the fuzzy inference
system for assessing the technical condition and residual life [29–31]. The example of the
expressions L, M, H of the input variable R is shown in Figure 14. The example of the
expressions L, M, H of the output variable delta is shown in Figure 15. The rules of fuzzy
inference system to evaluate the diagnostic interval when combining logical operations
AND, OR are shown in Figure 16. The response surface of the fuzzy inference system
to evaluate the diagnostic intervals in combining logic operations AND, OR is shown in
Figure 17.
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Generally, obtained models for diagnostics and prediction of the residual lifetime of
drives of technological systems and for calculation of diagnostic intervals based on fuzzy
logic are tuned to each object. Creating a fuzzy base of rules (knowledge) with Mamdani
consists of setting the variables of functions and weights of the rules and is done according
to the methods of least squares, the fastest descent. The logic–linguistic model serves as a
basis for the development of diagnostic algorithms [30,31].
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7. Experiments—Analysis of the Technological Equipment of the Line

The technological equipment of the chipboard production line at the plant Uvadrev-
Holding represents the BISON WERKE automatic production line from Germany, which
was put into production in the 1990s. In 2018, the production facilities were completely
replaced [35].

The process of chipboard production begins with the production of a chipboard base,
consisting of three layers of chips of different fractions. The plates already come together
with a binder of a certain amount onto the conveyor belt from the molding machines,
arranged one after the other. After the foundation has been formed, the upper layer is
moistened by spraying with water and entering the two-level press to the upper level.
The next layer enters the lower level of the press and the pressing is carried out according
to a given program to achieve a certain thickness of slab [29]. When pressed, they exit
the heater to the fan cooler where the hot plates are cooled in one cycle of the device.
Furthermore, the finished board is fed to a molding machine, at the output of which the
correct thickness is controlled by the sensors. The last operations are weighing the finished
plate and grinding it on several grinders. The finished plate is sorted and stacked. For
each operation, a certain device is used which is powered by electric drives, and which
also consists of different units and parts. The flow chart of the production line is shown
in Figure 18. The chipboard manufacturing process is controlled by the SCADA “Trace
Mode 6” system [36]. At a lower control level, Omron programmable logic controllers are
programmable. A series of inductive sensors, optical sensors, encoders, laser sensors, and
temperature and weight sensors are used as feedback sensors. Frequency control is used to
control electric induction motors.

A list of the drive equipment of the chipboard forming machine is shown in Table 1.
The power and synchronous frequency of the electric motors are shown in Table 2.

The downtime tables show exactly which production failures occur during an emer-
gency production stop. Figure 19 shows a comparison of downtime in 2016 and 2020 for
the Bizon production line. Downtime analysis shows that they occur most often as a result
of mechanical component accidents.

The basis of the analysis of the components of the chipboard production line was data
from the log of performed work, in which information about the performed repair work
was recorded. A sample including data from 2016 to 2020 was compiled.

An analysis of equipment reliability over a period of 5 years shows that, due to wear, a
large proportion of failures occur: roller bearings, chain drives, electric motors, while nodes
generate, on average, no more than 50% warranty and 18.2% overhaul life. At the same
time, the operation of the equipment shows that, under favorable operating conditions
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of the drives (quality assembly, adherence to the rules of technical operation, etc.), they
will fully develop warranty, repair, and even the total estimated service life [33,34]. The
specificity of failures caused by the destruction of an element (rolling bearing, electric
motor) is that such failures mean the replacement of whole units of the device without the
possibility of further recovery, which is the most expensive operation. At the same time,
product losses and labor costs during emergency shutdowns and failures in the general
operating mode are unconditional. All this determines the urgency of the problem of
drive diagnostics that determine the reliability and durability of technological equipment.
Plant “Uvadrev” chose the scheduled preventive repair time once a week. At the same
time, all equipment is stopped for repairs and maintenance. Repair is conducted by the
workshop’s lead mechanic, who decides to replace one or the other part of the equipment.
Any planned lubrication or cleaning work is also performed. At the end of each work,
each shift performs a number of certain operations, such as cleaning the equipment,
lubricating certain components, putting the equipment into operation, and all activities are
also recorded. Figure 20 shows the time spent on planned preventive maintenance of the
technological equipment between 2014 and 2020.
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Table 1. List of drive equipment for chipboard forming machine.

Type of drive Device Name Facility Name Availability of Mechanical Gears and Sensors

231M1—geared motor (asynchronous motor with
frequency converter) Belt conveyor for a large chips Belt conveyor for a large chips Rotary encoder, capacitive level sensors for mold

filling (8 pcs.)

231M2, 231M3—gear motor (asynchronous motor
with frequency converter) Conveyor cleaning screw drive Conveyor cleaning screws Speed sensor

231M4—gear motor (asynchronous motor with
frequency converter) Large bristle cleaning belt Large brush cleaning belt Speed sensor

233M1—geared motor (asynchronous motor with
frequency converter) Worm drive with coarse chips Tip drill with thick chips Speed sensor

234M1—geared motor (induction motor with
frequency converter) Belt conveyor of large chips Belt conveyor of large chips Speed sensor

235 M1—gear motor (asynchronous motor with
frequency converter) Oscillation of large chip conveyor belt Belt conveyor of large chips Chain transfer. Extreme position sensors,

rotation sensor

236M1, 237M1, 238M1—geared motor
(asynchronous motor with frequency converter) Chips drive “rake” Pressing machine Chain drive. Rotation sensors

251M1—gear motor (asynchronous motor with
frequency converter) Belt conveyor for fine chips Belt conveyor for small chips Rotary encoder, capacitive level sensors for mold

filling (8 × 2 pcs.)

251M2, 251M3—gear motor (asynchronous motor
with frequency converter) Conveyor cleaning screw drive Cleaning screw conveyor Speed sensor

251M4—geared motor (asynchronous motor with
frequency converter)

Cleaning of small particles using a brush conveyor
belt cleaning small particles using a brush

conveyor belt

Cleaning of small particles using a brush
conveyor belt Speed sensor

252—pneumatic cylinder
Partition damper drive (fine chip flow distribution)

Machine face.
Capacitive level sensors for mold filling (8 × 2 pcs.)

Forming machine Capacitive level sensor for filling forms (8 × 2 pcs.)

253M1, 254M1—geared motor (asynchronous motor
with frequency converter) Drive of fine chip feeding screws Forming machine Speed sensor

255M1, 256M1—geared motor (asynchronous motor
with frequency converter) Distributor screw drive Forming machine Speed sensor

257M1, 258M1—geared motor (asynchronous motor
with frequency converter) Switchgear drive Forming machine Chain drive. Extreme position sensors
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Table 1. Cont.

Type of drive Device Name Facility Name Availability of Mechanical Gears and Sensors

302M1,312M1, 322M1 gear motors (asynchronous
motors with frequency inverters) Needle shaft drive Forming machine Drive belts.

Speed sensors for each shaft

303M1, 313M1, 323M1—gearmotors (asynchronous
motors with frequency converters) Lower belt drive Forming machine Chain drive. Speed sensors for each belt

304M1, 314M1, 324M1—gearmotors (asynchronous
motors with frequency converters) Lower brush drive Forming machine Sensor of weight gain 1 on the shaft

305M1, 306M1, 315M1, 316M1—low voltage
electric motors “Vibrator” on the filter grid Forming machine Balancing, adjustable plates

325M1, 326MH, 327MH, 328MH, 329MH,
330MH1—geared motors (asynchronous motors
with frequency converters) Conventional drive

shaft drive

The drive of the classic drive shaft Forming machine Timing belt, speed sensor

308M1, 318M1—geared motors (asynchronous
motors with frequency converters) Conveyor belt drive Forming machine Speed sensor

331M1, 332M1 The drive of the conveyor belt Forming machine Speed sensor

321M1—geared motor (asynchronous motor with
frequency converter)

Forming machine—drive of height adjustable
secondary drive Forming machine Shaft with asterisk at the end, connector adapter

based on the two-row chain, gear

364M1—gear motor (asynchronous motor with
frequency converter) Drive main conveyor The main conveyor Chain transmission (two-row chain). Rotation

sensor, pallet availability sensor

365M1—geared motor (asynchronous motor with
frequency converter) Pallet brush drive The main conveyor Speed sensor
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Table 2. Power and synchronous frequency of electric motors.

Name of Engine Power kW The Synchronous Frequency of rpm

Coarse chip mixing motor 90 1000

Fine motor for mixing chips 30 1500

Electric motor of the first grinder 90 1500

Electric motor of second grinder 90 1500

Electric motor of the third grinder 90 1500

Electric motor of the first molding machine 22 1500

Electric motor of the third forming machine 22 1500

Electric motor shredder 75 1500

Electric motor of pneumatic sorting machine 45 1500

Self-cutting machine with electric motor 45 1500
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The analysis of the time spent on planned preventive maintenance of technological
equipment makes it possible to conclude that, after the modernization of equipment in
2018, the repair time was reduced from 350 h to 260 h per year (26%). Since 2019, there is a
tendency to increase repair time by 30 h each year.

8. Conclusions

In recent years, special attention has been paid to specialized methods that can be used
to automatically diagnose machines or their components. First of all, these are methods
of diagnosing rolling bearings according to the vibration mantle spectrum, which are
excited by frictional forces in the diagnosed assembly. The first and most complete system
of automatic rolling bearing diagnostics using these methods was developed in 2014 by
experts from VibroAcoustical Systems and Technologies.

At present, automatic systems for the diagnosis of gears, especially gearboxes, are
being developed based on individual vibration measurements. There are prerequisites
for developing such diagnostic systems for pump and turbine impellers [38]. All of them
are based on IT capabilities and complemented by information spectral technology. It is
expected that diagnostic systems for AC machines will be developed in the near future
using simple vibration measurements. Diagnostic rules are continually modified as infor-
mation about a particular monitoring object is collected. Initially, all known diagnostic
characteristics are used and, after the addition of statistical material, rules for qualitative
changes to the most informative vibration characteristics and operating mode indicators
for specific failures or group of failures are established [27,28]. After obtaining reference
vibration characteristics and informative operating mode indicators for all major object sta-
tus classes (for a possible list of operating mode change failures and structural parameters
characterizing its technical condition), diagnosis can be performed by comparing the most
current informative diagnostic parameters with standard and determining possible object
conditions (i.e., determine the nature of the failure and the list of possible errors).

This article proposes a methodology for diagnosing technical systems and determin-
ing their residual life on the basis of fuzzy logic. Currently, such a system of technical
diagnostics, which would estimate the current technical state of equipment and provide
early detection of possible defects, as well as predict their development in the future, has
not yet been created. Modern diagnostic methods are based on mathematical models,
which do not reflect all possible signs of developing defects. Therefore, the task of using
a heuristic approach based on artificial intelligence methods, namely, the theory of fuzzy
sets becomes relevant. All of the above confirm the need to develop diagnostic models
and methods for assessing the current technical state of equipment based on artificial
intelligence technology.

The authors plan to develop a diagnostic system that works in real time, transmitting
data from sensors to cloud storage, where this information is processed and analyzed. This
approach involves creating digital twins of real drives, with which we can determine the
current technical state of drivers, predict failures, and plan repairs.

The scientific novelty of the work lies in the fact that a new diagnostic model for de-
termining equipment defects and predicting its service life, based on a system of equations
with fuzzy cause–effect relations, is developed.
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